Refactoring Heterogeneous Relation Algebras around Ordered Categories and Converse
نویسنده
چکیده
We present a reorganisation of popular theories of “reasoning with relational flavour”, including allegories, Kleene algebras, and Dedekind categories, into an relatively symmetric picture using ordered categories as common base and defining converse independently from joins and meets. As an example application, we use this to regroup results about formalisation of algebraic graph rewriting and thus exhibit opportunities for applying these approaches in new settings. Finally we discuss how this approach influences the design of compatible approaches to formalisation and mechanisation of relation-algebraic theories.
منابع مشابه
A Pseudo Representation Theorem for Various Categories of Relations
It is well-known that, given a Dedekind categoryR the category of (typed) matrices with coefficients from R is a Dedekind category with arbitrary relational sums. In this paper we show that under slightly stronger assumptions the converse is also true. Every atomic Dedekind category R with relational sums and subobjects is equivalent to a category of matrices over a suitable basis. This basis i...
متن کاملA Pseudo Representation Theoremfor Various Categories of Relationsm
It is well-known that, given a Dedekind category R the category of (typed) matrices with coeecients from R is a Dedekind category with arbitrary relational sums. In this paper we show that under slightly stronger assumptions the converse is also true. Every atomic Dedekind category R with relational sums and subobjects is equivalent to a category of matrices over a suitable basis. This basis is...
متن کاملA RELATION BETWEEN THE CATEGORIES Set * , SetT, Set AND SetT
In this article, we have shown, for the add-point monad T, thepartial morphism category Set*is isomorphic to the Kleisli category SetT. Alsowe have proved that the category, SetT, of T-algebras is isomorphic to thecategory Set of pointed sets. Finally we have established commutative squaresinvolving these categories.
متن کاملRelation Algebras, Matrices, and Multi-valued Decision Diagrams
In this paper we want to further investigate the usage of matrices as a representation of relations within arbitrary heterogeneous relation algebras. First, we want to show that splittings do exist in matrix algebras assuming that the underlying algebra of the coefficients provides this operation. Second, we want to outline an implementation of matrix algebras using reduced ordered multi-valued...
متن کاملSymmetric Heyting relation algebras with applications to hypergraphs
A relation on a hypergraph is a binary relation on the set consisting of all the nodes and the edges, and which satisfies a constraint involving the incidence structure of the hypergraph. These relations correspond to join preserving mappings on the lattice of sub-hypergraphs. This paper introduces a generalization of a relation algebra in which the Boolean algebra part is replaced by a Heyting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004